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Motivation and Goals I 
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•  Screening  quarkonium suppression in QGP 
 

•  Decrease in the real part of the binding energy (Ebind) as 
a function of temperature 
 

•  Imaginary part of Ebind  thermal width which increases 
as a function of temperature 
 

•  Real and imaginary parts of the heavy quark potential, V, 
are known to leading order in an isotropic and 
anisotropic plasma 

Isotropic Potential:       Laine, Philipsen, Romatschke, and Tassler, hep-ph/0611300;  
Anisotropic Potential:   Burnier, Laine, Vepsalainen, 0903.3467 
                                     Dumitru, Guo, and Strickland, 0903.4703 
                                     Philipsen and Tassler, 0908.1746 
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Motivation and Goals II 

  RBRC Quarkonium Workshop, 6/6/2011 3 

•  Can solve Schrodinger equation including both Re[V] and 
Im[V]  
 

•  Gives Re[Ebind] and Im[Ebind] ≡ Γ as function of typical 
momentum and anisotropy in momentum space 
 

•  Evolve system as a function of proper time, rapidity, and 
transverse coordinates for different QGP viscosities 
 

•  Use “Anisotropic Dynamics” method which can describe 
systems which are highly anisotropic but reduces to 2nd 
order viscous hydro from small anisotropy 

Schrodinger EQ solution:  Margotta, McCarty, McGahan, Strickland, and Yager-Elorriaga, 1101.4651 
Anisotropic Dynamics:       Martinez and Strickland, 1007.0089, 1011.3056 
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Preview of Results  
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CMS says: 

CMS: 0 – 100% Centrality 

M. Strickland, forthcoming. M. Strickland, forthcoming. 
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QGP momentum anisotropy 

Processes 
Plasma Instability 
Inelastic Scattering 
Quark Pair Production  
Elastic Scattering 
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Anisotropic Plasma 
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prolate oblate 

Anisotropy parameter, 
ξ,  is related to 
pressure anisotropy of 
the system. 

Small Anisotropy Limit (Thermal fiso) 

Navier-Stokes Limit 
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Perturbative Anisotropic Potential 
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Potential calculation:  Dumitru, Guo, and Strickland, 0903.4703 
Gluon propagator in anisotropic plasma:  Romatschke and Strickland, hep-ph/0304092 

Using real-time formalism can express potential in terms of 
average of static advanced and retarded propagators 

Real part can be written 

With direction-dependent masses, e.g. 
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Perturbative Parameterization 
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Efficient parameterization of the potential can be 
constructed by introducing a direction-dependent 
Debye mass such that:  

This form reproduces (to acceptable accuracy) the small 
and large ξ limits of the perturbative anisotropic potential  

Factor of (1.4)2 from lattice fit of 
Kaczmarek et al, 2004 

M. Strickland, forthcoming. 
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•  Need to supplement the perturbative (short range) 
potential with an appropriate long range potential 

•  We use a generalization of the Karsch-Mehr-Satz (KMS) 
potential which has had the entropy contribution removed 
 
 
 
 
 
 
 

•  With α = 0.385 and σ = 0.223 GeV  

But … pQCD is not enough  
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KMS potential:  Karsch, Mehr, and Satz, Z. Phys. C37, 617 (1988) 
Isotropic case:  Mocsy and Petreczky, 0705.2558 
Anisotropic case: Dumitru, Guo, Mocsy, and Strickland, 0901.1998 
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•  So far only able to evaluate the imaginary part of the 
potential in the small anisotropy limit: 
 
 
 
 
 
 
 
 

•  With                     and 
 

•  Analytically  linear combination of hypergeometric 
functions  

Imaginary Part of the Potential 
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Solving the Schrodinger EQ 
•  Need to solve the 3d Schrodinger EQ 
•  Transform EQ to imaginary time, start with random wave 

function, and evolve to large imaginary time 
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+ + …

For details see Strickland and Yager-Elorriaga, A Parallel Algorithm for Solving the 3d 
Schrodinger Equation, Journal of Computational Physics 229, 6015 (2010). 
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Results for the ϒ binding energy 
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First consider the case that we hold phard fixed as we vary ξ 

ϒ

Margotta, McCarty, McGahan, Strickland, and Yager-Elorriaga, 1101.4651  
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Results for the χb binding energy 
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Margotta, McCarty, McGahan, Strickland, and Yager-Elorriaga, 1101.4651  

χb 
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Near Equilibrium QGP Evolution 
•  If the system is close to equilibrium and has 

pressures in the local rest frame which are 
approximately isotropic (PT ≅  PL) then we might 
try to use relativistic viscous hydrodynamics 
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T
µ!
= T

ideal

µ!
+!

µ!

•  The ideal stress tensor is thermal and isotropic 
•  Large amplitudes of the shear tensor compared to 

the ideal stress tensor indicate a problem with the 
hydrodynamic expansion itself 



Michael Strickland, Gettysburg College   RBRC Quarkonium Workshop, 6/6/2011 15 

Relativistic Hydro from Transport 
•  Describe evolution of the system using the Boltzmann 
equation 

C[f] = Collisional Kernel 

•  Can extract hydro equations from the Boltzmann equation by 
taking “moments” of the equation using an integral operator 

eg. 

0th moment operator 1st moment operator 
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0th Moment  
if number 
conserving 

collisional  
kernel 

Number conservation 

If particle number changing processes 
in kernel, eg 2 → 3, RHS is nonzero 

 :  Particle Number and Current 

1st Moment  
if energy 
conserving 

collisional  
kernel 

Energy-momentum 
conservation! 

:  Energy-Momentum Tensor 
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2nd Moment and generalities  
•  The first two moments are enough to generate equations 
of motion for ideal hydrodynamics. 

•  Canonically the second moment gives the first non-trivial 
(dissipative) equation of motion and can be used to derive 
2nd-order viscous hydro using transport theory. 

•  If the system is homogeneous in the transverse directions, 
the energy-momentum tensor in the local rest frame has the 
following form 

:  Energy Density 

:  Transverse Pressure 

:  Longitudinal Pressure 
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Boost Invariant 1d Hydro 
•  Consider a boost invariant system that is homogeneous in the 
transverse directions. 

•  Expand the energy momentum tensor to first order around an 
isotropic state → 1d viscous hydro. 

•  The 1d second order viscous hydro equations can be written in 
terms of the isotropic energy density/pressure and the rapidity-
rapidity (ς-ς) component of the shear tensor Π = Πς

ς. 

•  Can also include bulk viscosity; In QCD comes from breaking of 
conformality due to running coupling; maximal effect near Tc 

Shear viscosity 

Shear relaxation 
time 
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QGP momentum anisotropy 

Processes 
Plasma Instability 
Inelastic Scattering 
Quark Pair Production  
Elastic Scattering 
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Hydro Results - Strong Coupling 
Produced using code of Luzum and Romatschke, arXiv:0804.4015 Martinez and Strickland, arXiv:0907.3893 
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Hydro Results - Strong Coupling 
Produced using code of Luzum and Romatschke, arXiv:0804.4015 Martinez and Strickland, arXiv:0907.3893 
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Viscous Hydrodynamics  
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Hydro Results - Weak Coupling 
Produced using code of Luzum and Romatschke, arXiv:0804.4015 Martinez and Strickland, arXiv:0907.3893 
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Start over from scratch 
Viscous Hydrodynamics Expansion 

Anisotropic Dynamics (AD) Expansion
Isotropic in momentum space

prolate oblate 
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Collisional Kernel 

•  Relaxation time approximation 

•  Where Γ is the relaxation rate 

•  Γ is fixed by matching to 2nd order viscous hydro in 
the weak anisotropy limit 

•  T(τ) is the self-consistent isotropic temperature which 
we fix by requiring energy conservation at all proper 
times 
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0th Moment of Boltzmann EQ  

Using relaxation-time approximation scattering kernel gives 

1st Moment of Boltzmann EQ  

where 
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Linearized Equations  
If we linearize everything by keeping the lowest non-vanishing 
order in the anisotropy parameter we find the following relation 

and the coupled nonlinear differential equations reduce to 

Reproduces 2nd order viscous hydro in small anisotropy limit! 
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Hard Momentum vs Time 

[Strong Coupling] 
[Weak Coupling] 

M. Martinez and MS, Nuclear Physics A 848, 183 (2010). 
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Hydro vs AD : Strong Coupling 
M. Martinez and MS, Nuclear Physics A 848, 183 (2010). 
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Hydro vs AD : Weak Coupling 
M. Martinez and MS, Nuclear Physics A 848, 183 (2010). 
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Breaking Boost Invariance 

Need three dynamical equations.  ξ, phard, and θ are functions of 
proper time and spatial rapidity, ς. 

0th moment  

1st moment  
Contract with uµ 

Contract with vector 
orthogonal to uµ 

M. Martinez and MS, Nuclear Physics A 856, 68 (2011). 
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Non-Boost Invariant Evolution 
M. Martinez and MS, Nuclear Physics A 856, 68 (2011). 



Michael Strickland, Gettysburg College 

Putting the pieces together… 
•  We have the imaginary part of the binding energy 

energy as a function of phard and ξ
•  And now we know phard and ξ as a function of proper 

time and spatial rapidity 
•  Missing piece:  transverse coordinate dependence! 
•  We will model this by considering central collisions in 

which the temperature profile is a Gaussian given by 
 
 
 

•  Radial dependence is important since the thermal 
width approaches zero at the edges of the plasma 
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•  Resulting width is a function of τ, r, and ς.  First we need to 
integrate of proper time 
 
 
 
 

•  Next we should geometrically average over r 
 
 
 
 
 

•  Suppression factor is then

The suppression factor 
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QM 2011 - CMS Results 
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RHIC Suppression 
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LHC       = 2760 GeV 
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LHC       = 5500 GeV 
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LHC       = 2760 GeV 
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s

Caveats! 
 
(1) No transverse 

expansion 
 

(2) Temperature 
independent 
viscosity 
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LHC       = 2760 GeV 
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(1)  Here I am comparing 

CMS 0-100% 
centrality results with 
my central curves 
 

(2)  I have equated spatial 
rapidity and “y” 
 

(3)  No transverse 
expansion 
 

(4)  Rapidity profile of 
initial condition fixed 
by final state  

M. Strickland, forthcoming. 

Preliminary 
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Conclusions and Outlook 

•  Heavy quark potential  thermal width which determines 
suppression factor 

•  Almost all of the phenomenological pieces have been put 
together! 

•  Transverse dependence of the temperature is important:  
Large suppression in center, small at edges.  Extracted 
suppression factor is geometrical average of these 

•  Today I only showed results for central collisions with no 
transverse expansion … work in progress … 

•  Suppression of excited states and feed down … work in 
progress … 

•  Assumed initial spatial rapidity profile is based on final state 
fits … this needs further consideration … 
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Non-equilibrium ambiguity? 
•  For finite anisotropy increasing the anisotropy decreases 

the number and energy densities 
 
 
 
 
 
 

•  A large part of the effect seen is due to the number 
density and hence Debye mass decreasing.  Is that all? 
 

•  At leading order in ξ the result of holding either one fixed 
is the same so let’s look at the case of holding the 
number density fixed 
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Fixed Number Density Results 
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Margotta, McCarty, McGahan, Strickland, and Yager-Elorriaga, 1101.4651  

ϒ χb 

•  But .. this discussion is merely academic! 
•  To really find out what happens we need to evolve 

phard and ξ dynamically not holding anything fixed 
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QGP Thermodynamics 
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QCD Phase Diagram 
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QGP Thermodynamics 

LATTICE 
hotQCD - A. Bazavov et. al., Phys. Rev. D 80 (2009) 014504, [arXiv:0903.4379]. 
Wuppertal-Budapest - S. Borsanyi et. al., The QCD equation of state with dynamical quarks, arXiv:1007.258 
 
pQCD 
HTLpt - J.O. Andersen, L.E. Leganger, MS, and N. Su, Physics Letters B 696, 5, 468 (2011); arXiv:/1103.2528 

Nf = 2+1 
•  Lattice data from various 
groups show smooth crossover 
near Tc ~ 180 MeV 

•  Different lattice discretizations 
give slightly different results 

•  hotQCD results shown are 
not continuum extrapolated 

•  Theory curves are based on 
Hard Thermal Loop perturbation 
theory (HTLpt) reorganization of 
finite temperature QCD 
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The QGP EOS at Finite T 

Nf = 2+1 
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The QGP EOS at Finite T 
HTLpt : Reorganizes loop expansion 
around classical state of high temperature 
QCD which includes “hard-loop” resummed 
propagators and vertices 

  RBRC Quarkonium Workshop, 6/6/2011 



Michael Strickland, Gettysburg College   RBRC Quarkonium Workshop, 6/6/2011 49 

NNLO Diagrams 

What is special about 3 loops? 
This where attractive double gluon exchange 
diagrams enter, eg 
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Recent 
Experiments 

LHC @ 5.5 A TeV :  
To ~ 820 MeV ~ 4.6 Tc 

LHC @ 2.76 A TeV :  
T ~ 690 MeV ~ 3.9 Tc 

RHIC @ 200 A GeV :  
To ~ 360 MeV ~ 2 Tc 
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QGP Dynamics 
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Time Scales @ RHIC 

Hot Hadron Gas 

Equilibrium QGP 

Nonequilibrium QGP 

Hard Particle Production 
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Weak vs Strong Coupling 
•  Strong coupling constant on the order of  
αs ~ 0.2 – 0.3 

•  Hard degrees of freedom can be treated 
perturbatively [pt > 2 GeV] 

•  Soft (bulk) degrees of freedom may be strongly 
coupled [pt < 2 GeV] 

•  Hadronization : nonperturbative physics – currently 
treated rather crudely (Cooper-Frye prescription) 

•  Theoretical studies in both strong and weak 
coupling limits are needed 
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QGP Initial State 
•  Nuclei take 0.1 - 0.2 fm/c to pass through one another 
•  Most of the quarks (and hence baryon number) continues 

down the pipe 
•  Highest energy densities (momenta) occur at early times  

perturbative regime  Color Glass Condensate / Glasma 
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See eg 
L. McLerran, The CGC and the Glasma: Two Lectures at the Yukawa Insitute, arXiv:1011.3204 (2011). 
F. Gelis, Color Glass Condensate and Glasma, Nucl. Phys. A854, 10 (2011). 
And references therein 
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Thermalization 
•  Binary and multiparticle collisions (number 

conserving and non-conserving) 

•  In addition, plasma instabilities are present 

•  In the weak coupling limit plasma instabilities 
are the fastest mechanism for plasma 
isotropization 

•  Collision time scale : tcollisions ~ g-4 

•  Instability time scale : tinstability ~ g-1 
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S. Mrówczynski and M. Thoma, Phys. Rev. D 62, 036011 (2000). 
P. Romatschke and MS, Phys. Rev. D 68, 036004 (2003). 
P. Arnold, J. Lenaghan, and G. Moore, JHEP 0308, 002 (2003). 
B. Schenke, MS, C. Greiner, and M. Thoma, Phys.Rev. D73, 125004  (2006). 
A. Rebhan, MS, and M. Attems, Phys.Rev. D78, 045023 (2008).  
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Gauge Field Dynamics in Anisotropic Plasmas 
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Collective modes 
•  Solve for the poles in the plasma  
gluon propagator 

•  Stable and unstable modes 

•  Unstable modes work to restore isotropy 
by generating compensating field pressure 

oblate 
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The chromo-Weibel instability 
Particle and field pressures → Isotropization 

Transverse Particle 
Pressure 

Longitudinal Particle Pressure 

1+1d 

2 fm/c 8 fm/c 

[Rebhan, MS, and Attems, Phys. Rev. D 78, 045023 (2008)] 
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Transverse Particle 
Pressure 

Longitudinal Particle Pressure 

1+1d 

2 fm/c 8 fm/c 
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Rebhan and Steineder, Phys. Rev. D81, 085044 (2010)  

The chromo-Weibel instability 
Particle and field pressures → Isotropization 

[Rebhan, MS, and Attems, Phys. Rev. D 78, 045023 (2008)] 
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Boost Invariant 1d Expansion 
•  Consider boost-invariant one-dimensional expansion and 
describe the system using the Boltzmann equation 

Collisional  
Kernel 

•  If system is homogeneous in the transverse direction then 
the transverse derivatives vanish.   

•  If system is boost-invariant then the local rest frame has 
velocity vz = z/t. 

•  In lab frame the Boltzmann equation becomes 
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0+1 Boost Invariant Hydro Results 

Initially Prolate 

Initially Isotropic 

Initially Oblate 

Martinez and Strickland, arXiv:0907.3893 
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Energy-Momentum Tensor 
•  Can calculate all components analytically 

where 
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Relation between ξ and Π 
•  Equating the longitudinal pressure with that obtained using 
linearized hydro we obtain 

•  In the limit of small ξ 

•  For Navier-Stokes viscous hydro one obtains  
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Positivity of Entropy Divergence  

using 

can show 
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Ideal Hydro Limit  
If we take the scattering rate Γ to infinity the first and second 
equations reduce to 

Which has the solution 

Ideal hydro limit is recovered! 
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Free Streaming Limit  
If we take the scattering rate Γ to zero we obtain 

Which has the solution 

Free streaming limit is recovered! 


